
International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

128

An analysis of embedded systems hardware security

Venkata Ramana Kothakota
Raajdhani Engineering College, Bhubaneswar

venkata Ramana@rec.ac.in

Abstract

Throughout the product development lifecycle, safe

hardware design is frequently disregarded, leaving

many devices open to hacker attacks that could cause

service theft, financial loss, or reputational damage.

After a negative event, items frequently need to be

changed, which drives up overall development costs

and lengthens time-to-market. The broad principles of

hardware security are the main topic of this study.

Necessary.This document covers attack and threat

models, enclosure, circuit board, and firmware layer

design solutions, and suggestions for integrating

security into the product development cycle.

Keywords: Firmware, PCB, Security,

Attacks, Tamper Mechanisms.

1. Introduction

Embedded systems are electronic computer

systems designed for dedicated operating

functions, often while respecting several

constraints like real-time computing, power

consumption, size and cost, etc. Embedded

systems control many devices in common use

today such as Smartphone’s, GPS, codec GSM,

decoders, MP3, MPEG62,

MPEG4,PDAs,RFIDs, smart card sand

networked sensors etc. Generally, they are

controlled by one or more main processing cores

that are typically either Microcontrollers, Digital

Signal Processors (DSPs) or Field Programmable

Gate Arrays (FPGAs). These systems are

embedded as part of a complete electronic

system, often including software, hardware, and

communication and sensor parts. By contrast, a

general-purpose computer - such as a Personal

Computer (PC) - is designed to be flexible and to

meet a wide range of end-user needs. The key

characteristic of an embedded system is that it is

dedicated to the handling of a particular task.

They may require very powerful processors And

extensive communications. Ideally, these

embedded systems are completely self-contained

and will typically run off a battery source for

many years before the batteries need to be

changed or charged. Since such systems are

embedded and dedicated to specific tasks, design

engineers search to optimize them by reducing

their size (miniaturization made possible by

advanced IC design in order to couple full

communication subsystems to sophisticated

sensors) and cost in terms of energy

consumption, memory and logic resources, while

increasing their reliability and performance.

Consequently, embedded systems are especially

suited for use in transportation, medical

applications, safety and security. Indeed, in

dealing with security, embedded systems can be

self-sufficient and should be able to deal with

communication systems. Considering these

specific Conditions, in the fields of information

and communication technology, embedded

systems designers are faced with many

challenges in terms of both the tradeoff between

cost/performance/power and architecture design.

This is especially true for embedded systems

designs, which often operate in non-secure

environments, while at the same time being

constrained by such factors as computational

capacity, memory size and - in particular –

power consumption. One challenge is in the

design of hardware architecture able to meet the

appropriate level of security and consequently

International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

129

the best trade-off between hardware resources

and the best throughput rates for real-time

embedded applications. The primary goal of this

paper is to introduce the reader to the concepts of

designing secure hardware in embedded systems.

Understanding the major classes of attack and

the mindset of potential attackers will go a long

way in helping one to decide on the best and

proper secure hardware design methods for a

particular application. Examples of previous

hardware attacks are discussed throughout the

paper. By learning from prior attacks, we can

understand the weaknesses and mistakes of such

designs and improve upon them in our own

products. We also provide numerous references

and resources for the reader to explore in more

detail[1].

2. Security in the Product

Development Cycle

As designers, the best we can do is understand

the potential attacks against our system, design

methods to prevent such attacks, with the

understanding that nothing is ever 100While

many design methodologies exist, the primary

concern is to incorporate risk analysis and

security considerations into each step of the

cycle. Having high-level processes in place will

help to ensure that the low-level design details

are properly implemented. In NIST’s

Engineering Principles for Information

Technology Security (A Baseline for Achieving

Security), a number of security principles are

provided that can be applied to any design

process: 1. Establish a sound security policy as

the ”foundation” for design. The security policy

identifies security goals the product should

support .The goals guide the procedures,

standards, and controls of the development cycle.

It may be necessary to modify or adjust security

goals due to other operational requirements. 2.

Treat security as an integral part of the overall

system design. Security must be considered

during product design. It is very difficult to

implement security measures properly and

successfully after a system has been developed.

3. Reduce risk to an acceptable level. Risk is

defined as the combination of the probability that

a particular threat source will exploit

vulnerability and the resulting impact should this

occur. Elimination of all risk is not cost-effective

and likely not possible. A cost-benefit analysis

should be conducted for each proposed secure

hardware mechanism. 4. Implement layered

security (Ensure no single point of failure).

Security designs should consider a layered

approach of multiple security mechanisms to

protect against a specific threat or to reduce a

vulnerability. 5. Strive for simplicity. The more

complex the mechanism, the more likely it may

possess exploitable flaws. Simple mechanisms

tend to have fewer exploitable flaws and require

less maintenance. 6. Minimize the system

elements to be trusted. Security measures include

people, operations, and technology. Where

technology is used, hardware, firmware, and

software should be designed so that a minimum

number of elements need to be trusted in order to

maintain protection. In Kocher’s Hacking[2]

Cryptosystems presentation, it is recommended

to”put all your eggs in one basket” by isolating

all critical content into one secure area instead of

having multiple secure areas throughout the

design. This way, you can focus on properly

securing and testing a single critical area of the

product instead of many disparate areas. 7. Do

not implement unnecessary security

mechanisms. Every security mechanism should

support one or more defined goals. Extra

measures should not be implemented if they do

not support a goal, as they could add unneeded

complexity to the system and are potential

sources of additional vulnerabilities. All likely

classes of attack should be protected against.

Many times, an engineering change will be made

to the product circuitry or firmware without re-

evaluating the effect such a change may have on

system security. Without a process in place to

analyze changes throughout the design cycle,

security that was properly implemented at the

beginning of the design may become irrelevant

by the time the product goes into production.

Requiring trusted third party design reviews of

the product during the prototype and pre-

production phases allow a ”fresh set of eyes” to

examine the product for any critical design flaws

that are non-obvious or have been simply

overlooked by the product designers.

International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

130

3. Security issues

Before deciding on acceptable secure hardware

methods to design into your product, risk

assessment of three key areas must take place:

What needs to be protected? The critical

components in your circuit that need to be

protected should be identified before the product

is actually constructed, as it is extremely difficult

(if not impossible) to implement proper security

mechanisms after-the-fact. Such components

may include specific algorithms, device

identifiers, digital media, biometrics,

cryptographic keys, complete product firmware,

or other product-specific data. In addition to

protecting discrete data contents, you may be

interested in implementing a secure product boot

sequence, field programmability, or remote

management interface. Be aware that in some

cases, even on-critical portions can unknowingly

compromise the security of the system. Why it is

being protected. In some countries, protecting

certain content may be a legislative requirement

(for example,

a medical device containing confidential patient

information must be secured in order to meet the

U.S. HIPAA requirements). In most situations,

critical data is being protected to prevent a

specific security threat .It is important to

acknowledge that an attack threat may exist and

to implement the proper mechanisms to prevent

them. Ignoring or overlooking the possibility of

attack can lead to a vulnerable product. Who you

are protecting against. The types of attackers

vary greatly, from a curious hardware hacker to

an entire group backed by organized crime,

government, or a competitor. As such, it is

important to attempt to properly identify the skill

level and theoretical goals of the primary

attackers[1].

4. Attacks on Embedded System

Attacks on embedded systems can be categorized

in three classes i.e. software attacks, physical

attacks and side channel attacks. Software

attacks have largest share in total number of

attacks on embedded systems and it is most

difficult to protect against such attacks. In this

article we will focus on software attacks and

countermeasure against these attacks. An

overview of physical and side channel attacks

will be provided.

Figure 1: Embedded System Attacks

 Side Channel Attacks:

Side channel attacks are based on observing

system properties e.g. time, power consumption

while system is performing computations e.g.

cryptographic operations. In certain systems

timing information can lead to entire secret key,

though it seems that timing information can give

very little information but it has found that with

proper study of timing sequence entire secret key

can be found. Along with this power

consumption can also lead to the entire secret

key, well equipped labs have the equipment that

can measure the changes in the power

consumption with about 1 accuracy and are very

in expensive. To overcome timing attacks one

may add random timing delays to various

operations, in similar manner we can overcome

power consumption attacks by adding random

noise or by proper shielding of the equipment but

it leads to increased cost of the equipment[1].

International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

131

 Software Attacks

Software attacks are very common in embedded

systems capable of downloading application

from internet or have some means of

communication to interact with external world.

As compare to physical and side channel attacks,

software attacks are very cheap and does not

requires any big infrastructures thus making it an

immediate challenge for embedded system

design[3].

 Practical Design Solutions

This section examines three levels of the

product: enclosure, circuit board, and firmware.

Design solutions and protection methods are

proposed, and attack examples are provided for

historical reference.

 Product Enclosure

The design of a secure product enclosure is

critical to prevent attackers from gaining access

to the internal circuitry. Once the circuit board is

accessible to the attacker, they will typically

reverse-engineer the design to create a schematic

and then identify possible attack vectors.

Opening some products is as simple as loosening

a few screws or prying open the side with a

hobby knife or screwdriver.

 External Interfaces

External interfaces are typically a product’s

lifeline to the outside world. Such interfaces may

be used for a number of purposes, including

connecting to peripherals, field programming, or

testing during product manufacturing. Typical

interfaces include Firmware, USB, RS232,

Ethernet, or JTAG IEEE 1149.1. Products often

implement development or programming

interfaces that are not meant for everyday

consumer use, but can benefit an attacker

immensely. Simply obfuscating these interfaces

with proprietary connector types or hidden

access doors or holes is not suitable as they will

easily be discovered[9].

 Tamper Mechanisms

The goal of tamper mechanisms is to prevent any

attempt by an attacker to perform an

unauthorized physical or electronic action

against the device. Tamper mechanisms are

divided into four groups: resistance, evidence,

detection, and response. Tamper mechanisms are

most effectively used in layers to prevent access

to any critical components. They are the primary

facet of physical security for embedded systems

and must be properly implemented in order to be

successful. From the designer’s perspective, the

costs of a successful attack should outweigh the

potential rewards. Often, existing tamper

mechanisms can only be discovered by

attempted or complete disassembly of the target

product. This may require an attacker to obtain

more than one device in order to sacrifice one for

the sole purpose of discovering such

mechanisms. Once the mechanisms are noted, an

adversary can form hypotheses about how to

attack and bypass them[9].

 Physical Access to Components

Sensitive components that are most likely to be

targeted for an attack (such as the

microprocessor, ROM, RAM, and programmable

logic) should be made difficult to access.

Reverse engineering the target product usually

requires one to determine the part numbers and

device functionality of the major components on

the board. Understanding what the components

do may provide details for particular signal lines

that may be useful for active probing during

operation. Components are easily identified by

their part numbers and manufacturing markings

on the device packaging , and by following their

traces to see how they interconnect with other

components on the board. Nearly all IC

manufacturers post their component data sheets

on the Web for public viewing, and online

services such as IC Master, Data Sheet Locator,

and Part Miner provide part number searches and

pin out and package data for hundreds of

thousands of components. To increase the

difficulty of reverse engineering and device

identification, it is recommended that all

International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

132

markings be scratched off the tops of the

chips[9].

 PCB Design and Routing

Proper engineering practices should always be

exercised. Traces should remain as short as

possible. Differential signal lines should be

aligned parallel even if located on separate

layers. Noisy power supply lines should be kept

away from sensitive digital and analog lines.

Properly designed power and ground planes

should be employed to reduce EMI emissions.

Additionally, any unnecessary test points should

be removed from the design, as they allow

unwanted noise and interference to pass through

the PCB. If test points are required, consider

using a copper-filled pad as opposed to a

through-hole pad. Critical traces should be

hidden on inner board layers and trace paths

should be obfuscated to prevent easy reverse

engineering of circuitry. Use buried vias, which

connect two or more inner layers but no outer

layer and cannot be seen from either side of the

board, to reduce potential probing points for the

attacker. Be aware of electrical noise issues that

these modified traces may introduce[8].

 Bus Protection

Device operation and information can be gleaned

by analyzing the internal address, data, and

control bus lines with a logic analyzer, digital

oscilloscope, or custom circuitry. Targeted bus

lines could be probed by simply removing the

solder mask on the circuit board. Be aware of the

data being stored in memory at all times and

what is transferred across exposed and accessible

buses[9].

5. Conclusion

The goal of this paper was to introduce the

reader to secure hardware design concepts,

attacks, and potential solutions. It is by no means

complete as such mechanisms are constantly

evolving. The beginning sections of the paper

provided information on security policies and a

baseline classification of attackers, attack types,

and threat vectors. The majority of the paper

focused on the many aspects of the secure

hardware design process, divided into enclosure,

circuit board, and firmware layers. Wherever

possible, we referenced previous hardware

attacks for educational and historical purposes.

When designing a product, it is essential to first

establish a security policy that defines the

security goals of the product, as you must first

understand what you are protecting and why you

are protecting it before security can be

successfully implemented. Staying aware of the

latest attack methodologies and trends will

enable you to choose the proper means of

protection for your particular product.

References

[1] D.G. Abraham, G.M. Dolan, G.P. Double,

and J.V. Stevens, ”Transaction Security

System,” IBM Systems Journal, vol. 30, no.

2, 1991:

http://www.research.ibm.com/journal/sj/302

/ibmsj3002G.pdf.

[2] Aleph One,”Smashing the Stack for Fun and

Profit:http://www.securityfocus.com/library/

14.

[3] R.J. Anderson and M. Kuhn,”Low Cost

Attacks on Tamper Resistant Devices,”

Security Protocols, 5th International

Workshop, 1997, http://www.cl.cam.ac.uk/

mgk25/tamper2.pdf.

[4] R.J. Anderson,”Security Engineering-A

Guide to Building Dependable Distributed

Systems,” John Wiley and Sons, 2001

Techniques,” John Wiley and Sons, 1998.

[5] B. Dipert,”Cunning Circuits Confound

Crooks,” EDN Magazine, October 12, 2000.

[6] J. Dyer, M. Lindemann, R. Perez, R. Sailer,

S.W. Smith, L. van Doorn, and S. Weingart,

”Building the IBM 4758 Secure

Coprocessor,” IEEE Computer, October

2001.

[7] M. Fisher,”Protecting Binary Executables,”

Embedded Systems Programming, February

2000. 13. M.G. Graff and K.R. Van Wyk,

”Secure Coding: Principles and Practices,”

O’Reilly and Associates, 2003. 14. J. Grand

(Editor), et al.,”Hardware Hacking: Have

Fun While Voiding Your Warranty,”

Syngress Publishing, 2004.

http://www.research.ibm.com/journal/sj/302
http://www.securityfocus.com/library/
http://www.cl.cam.ac.uk/

International Journal of Engineering Sciences Paradigms and Researches [Volume 47, Issue: Special), March 2018]

www.ijesonline.com ISSN (Online): 2319-6564

133

[8] P. Gutmann,”Secure Deletion from

Magnetic and Solid-State Memory

Devices,” Sixth USENIX Security

Symposium, 1996.

[9] Practical Secure Hardware Design for

Embedded Systems Joe GrandGrand Idea

Studio, Inc. http :

www.grandideastudio.com

http://www.grandideastudio.com/

